The Parameterization Of the Planetary Boundary Layer in the UCLA General Circulation Model: Formulation and Results

1983 ◽  
Vol 111 (11) ◽  
pp. 2224-2243 ◽  
Author(s):  
Max J. Suarez ◽  
Akio Arakawa ◽  
David A. Randall
2017 ◽  
Vol 122 (13) ◽  
pp. 6818-6843 ◽  
Author(s):  
Etienne Vignon ◽  
Frédéric Hourdin ◽  
Christophe Genthon ◽  
Hubert Gallée ◽  
Eric Bazile ◽  
...  

2014 ◽  
Vol 6 (2) ◽  
pp. 300-314 ◽  
Author(s):  
Christine C. W. Nam ◽  
Johannes Quaas ◽  
Roel Neggers ◽  
Colombe Siegenthaler-Le Drian ◽  
Francesco Isotta

2014 ◽  
Vol 14 (13) ◽  
pp. 6717-6727 ◽  
Author(s):  
E. L. McGrath-Spangler ◽  
A. Molod

Abstract. Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Köppen–Geiger climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number methods are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.


Sign in / Sign up

Export Citation Format

Share Document